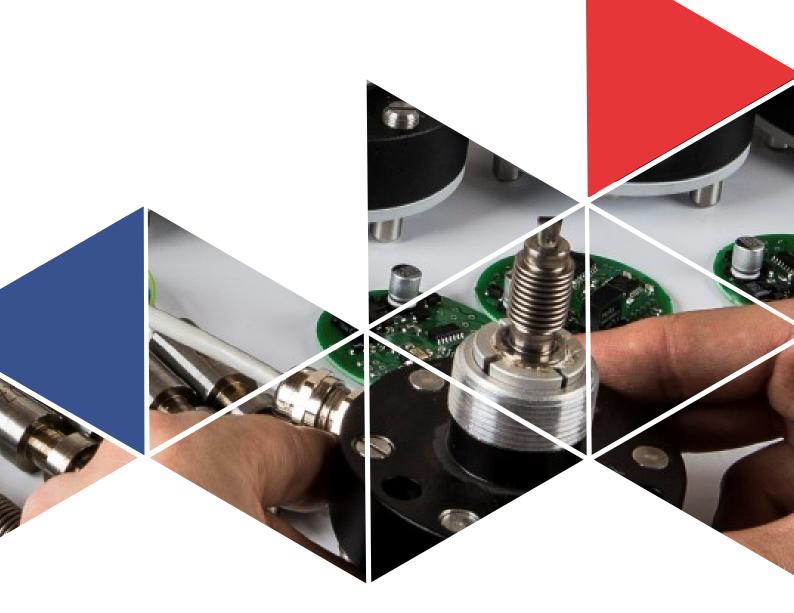


О КОМПАНИИ

НТП «Горизонт» — российский производитель средств измерений механических величин для систем мониторинга строительных сооружений, антенных опор, систем контроля углового положения и виброчастотного мониторинга.


Многолетний накопленный опыт разработки позволяет нам создавать средства измерений с превосходными техническими характеристиками. Наши инклинометры и акселерометры установлены в сотнях измерительных системах и комплексах по всей России от Калининграда до Владивостока в качестве первичных источников информации об угловом положении, угловых подвижках и колебательных ускорениях объекта.

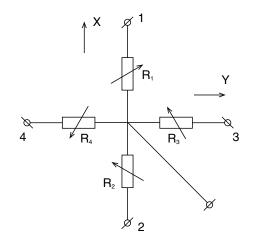
Вся продукция НТП «Горизонт» проходит выходной контроль качества и отвечает повышенным требованиям к отказоустойчивости и работоспособности. Надежность наших средств измерений проверена временем и многочисленными инсталляциями в самых суровых условиях.

КРАТКОЕ ОПИСАНИЕ

Прецизионный инклинометр (измеритель наклона) ИН-ДЗ предназначен для измерений малых углов наклона и наклонных перемещений объекта по двум координатам, горизонтальных ускорений и низкочастотных колебаний в системах непрерывного мониторинга состояния строительных конструкций и системах стабилизации.

ПРИНЦИП РАБОТЫ

Измеритель состоит из первичого преобразователя и и электронного блока – преобразователя, размещенных в одном корпусе. Корпус имеет 3 опорных винта, с помощью которых производится точная установка измерителя на объекте.


У измерителя определены три взаимно-перпендикулярные измерительные оси. На направление горизонтальных измерительных осей X и Y указывают риски, нанесенные накорпус измерителя.

Первичный преобразователь представляет собой заполненную электролитом металлическую ампулу, с пятью токовыводами, содержит центральный металлический электрод, играющий роль демпфированного мятника и четыре боковых электрода. При наклоне преобразователя изменяются расстояния между центральным электродом-мятником и боковыми электродами в двух взаимоперпендикулярных направлениях, что приводит к изменению электрических сопротивлений R1, R2, R3, R4 заполненных электролитом межэлектродных полостей.

Встроенный электронный преобразователь,

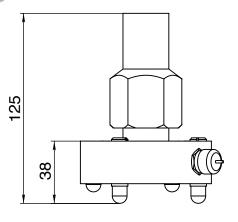
отслеживая указанные изменения, вырабатывает электрические сигналы, величины и знаки которых определяют величины и знаки составляющих углов наклона по двум измерительным осям.

Электрический сигнал подвергается аналогоцифровому преобразованию с помощью микропроцессорного АЦП с последующей передачей данных по интерфейсу RS-485.

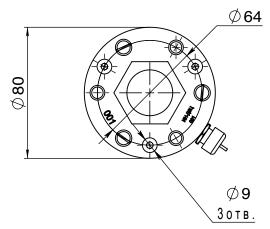
- Контроль отклонения объекта от вертикали в системах стабилизации углового положения
- Регистрация угловых подвижек объекта мониторинга: платформ, оснований, фундаментов, опор строительных конструкций
- Низкочастотный вибромониторинг строительных сооружений
- Диагностика напряженно-деформационного состояния строительного сооружением по изменению собственных частот колебаний

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Модельный ряд	ИН-ДЗ	ИН-ДЗ	ИН-ДЗ	ИН-ДЗ	ИН-ДЗ	ИН-ДЗ	ИН-ДЗ	ИН-ДЗ
	360	720	1440	1800	3600	7200	10800	14400
Диапазон измерений	±360"	±720"	±1440"	±1800"	±3600"	±7200"	±10800"	±14400"


1	И Функция преобразования				
	Пределы допускаемой основной относительной погрешности измерений угла, % от диапазона:				
2	- для измерителей с цифровым выходом	± 0,5			
	- для измерителей с аналоговым выходом	± 0,7			
	Фактическое значение основной погрешности:				
3	- для измерителей ±360", % от диапазона измерений	0,15			
	- для измерителей ± 720 ″, ± 1440 ″, ± 1800 ″, ± 3600 ″, ± 7200 ″, ± 10800 ″, ± 14400 ″,% от диапазона измерений	0,1			
4	Предельное значение собственного дрейфа нуля, % от диапазона измерений	±0,3			
5	Пределы допускаемой дополнительной погрешности, вызванная изменением температуры на 1°C, % от диапазона измерений	±0,005			

ОСОБЕННОСТИ ИСПОЛНЕНИЯ



- различные диапазоны измерений для разных задач
- исполнение с аналоговым и цифровым выходом RS-485
- поддержка протокола обмена данными ModBUS
- вариант исполнения с расширенным температурным диапазоном -60 +60 °C
- степень пылевлагозащиты ІР31, ІР65
- вариант исполнения для ВПК на российской элементной базе

JAVA, A. P.

MAMA

6	Температурный дрейф нуля, вызванный изменением температуры на 1°C, % от диапазона измерений	±0,005		
7	Рабочий температурный диапазон, C°	от – 40 до + 50		
8	8 Расширенный температурный диапазон, С°			
9	Частотный диапазон измерения при неравномерности АЧХ на уровне ЗдБ, Гц			
10	Угол между радиальными измерительными осями преобразователя, °	90 ±1		
	Смещение «базового нуля», % от диапазона			
11	для измерителей ±360 ″, ±720 ″	в пределах ±0,4		
	для измерителей ±1440 ″, ±1800 ″±3600 ″, ±7200 ″ ±14400 ″, ±18000″, ±21600 ″	в пределах ±0,2		
12	2 Пылевлагозащищённость, степень защиты ІР			
13	3 Средний срок службы, лет			
14	4 Количество измерителей, подключаемых к одному преобразователю интерфейсов			
15	Общая длина кабельной линии, м	до 800		
	Напряжение питания			
16	- измерителей с цифровым выходом, В	от 9 до 24		
	- измерителей с аналоговым выходом, В	5		
	Потребляемый ток			
17	- измерителей с цифровым выходом, не более, мА	20		
	- измерителей с аналоговым выходом, не более, мА	10		
18	18 Габаритные размеры преобразователя (Ø x высота), мм			
19	19 Масса преобразователя, кг			

ОБЛАСТИ ПРИМЕНЕНИЯ

Ракетно-космический комплекс, ВПК:

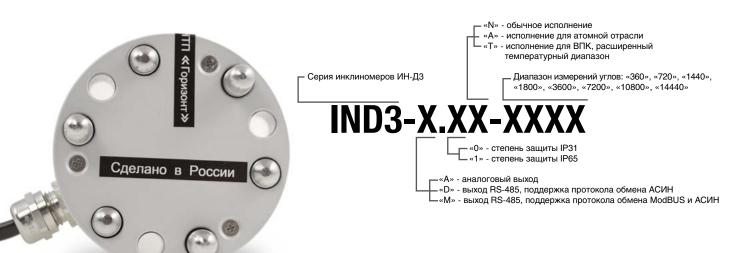
- Системы стабилизации пусковых ракетных комплексов, стартовых столов
- Системы точного позиционирования и управления положением

Промышленное и гражданское строительство:

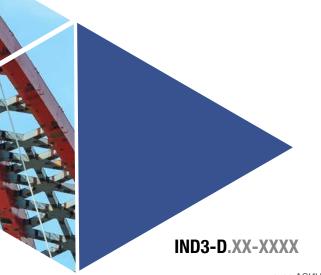
- Системы мониторинга строительных сооружений (СМИК) с целью определения технического состояния несущих конструкций, оснований, фундаментов, мостов и других технически-сложных конструкций
- Комплексы вибродиагностики строительных сооружений

Атомная энергетика:

 Системы статического и динамического мониторинга эксплуатируемых объектов использования атомной энергии по СТО-СРО-С 60542960 00043-2015


Машиностроение:

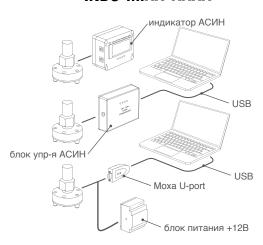
- Проверка точности установки рабочих поверхностей станков
- Проверка плоскостности крупногабаритных изделий


Ветроэнергетика:

• Вибромониторинг напряженно-деформационного состояния опор ветрогенераторов

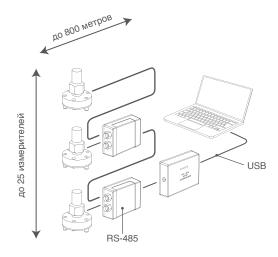
ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

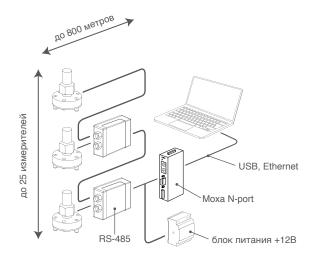
СХЕМЫ ПОДКЛЮЧЕНИЯ


В зависимости от конфигурации датчика возможны различные схемы подключения по протоколу ACИH и ModBus. Построение измерительных сетей инклинометров на базе ModBus позволяет добиться высокого уровня универсальности и простоты подключения к SCADA-системам, т.к. не требует написания программных модулей и драйверов сопряжения.

Установка измерителя на площадке, подключение к ПК для проведения разовых измерений:

блок упр-я АСИН


IND3-M.XX-XXXX



Построение последовательных измерительных цепей. Подключение измерительных цепей к ПТК системы мониторинга:

IND3-D.XX-XXXX

IND3-M.XX-XXXX

ООО «НТП «Горизонт»

г. Москва, 129626 ул. 3-я Мытищинская, д. 16, стр. 4. Тел: +7 (495) 517-0372 Тел./Факс:+7 (495) 602-9316

ntpgorizont.ru info@ntpgorizont.ru